
 RTL8712 Driver Programming Guide Draft 0.2
 2009/7/29

RTL8712 Driver Programming Guide

Preliminary

Revision: Draft 0.2
Released Date:2009/06/01
Revision History

	Version
	Data
	Author
	Change

	0.1
	04/06/2009
	George
	Initial draft

	0.2
	06/01/2009
	
	Adding and modified the whole document.

	0.3
	
	
	

	0.4
	
	
	

	0.5
	
	
	

	0.6
	
	
	

	0.7
	
	
	

	
	
	
	

	
	
	
	

Table of Contents

21
Introduction

22
Driver Architecture

2Overview of function blocks

23
Modules and Function Blocks

23.1 XMIT Path

23.1.1 TX Data Structure

23.1.2 TX Flow

23.2 RECV Path

23.2.1 RX Data Structure

23.2.2 RX Flow

23.3 HCI Wrapper Layer

23.3.1 SDIO sub-Layer

23.3.2 USB sub-Layer

23.4 IOCTL Dispatcher

23.4.1 IOCTL overview

23.4.2 Basic dispatch functions

23.4.3 Advanced dispatch functions for WPA/WPA2

23.5 CMD/EVENT

23.5.1 H2C Commands

23.5.2 Firmware Events

23.5.3 CMD Threads

23.5.4 Event Handling

23.6 MLME Layer

23.6.1 Site Survey - BSSID SCAN and LIST

23.6.2 Join a BSS - Set SSID

23.6.3 Disconnect - Disassociate CMD

23.6.4 Wireless LAN IOCTL on Linux OS

24
INT Handler

25
Basic Operations

26
References

1 Introduction

This document is intended for RTL8712 device driver programmers who need to port to different OS.

RTL8712 is a processor-based IEEE802.11 b/g/n compliant RF-SoC.

To configure RTL8712 working properly, driver must control RTL8712 by conventional register read-write and the command/event mechanism. The embedded CPU will process the command file passed from the Host Driver, and it will also notify the proper events to the Host Driver as the appropriate conditions satisfy. Driver programmer should refer RTL8712 data sheet for detailed register set information.

2 Driver Architecture

[image: image1]
Figure 2-1
Overview of function blocks

(A) XMIT_OSDEP, XMIT_FUNC and XMIT_THREAD
XMIT_DESP include the functions that related with the OS interface.
XMIT_FUNC and XMIT_THREAD include the functions that are OS independent. The core packet transmission flow is in XMIT_FUNC.
(B) RECV_OSDEP and RECV_FUNC
RECV_OSDEP include the functions that related with the OS interface.
RECV_FUNC include the functions that are os independent. The core packet receiving flow is in RECV_FUNC.
(C) HCI Wrapper

The all io APIs are in this layer. The APIs is offered for uplayer, which didn’t need to know the HCI type is USB or SDIO.
(D) OID/OICTL Dispatcher
This Dispatcher is for OS to access or control the WLAN card.
(E) CMD Thread

The CMD Thread is the method which the WLAN driver is used to communicates with WLAN firmware.
(F) Event Handle
The Event Handle is the method which the WLAN firmware is used to communicates with WLAN driver.
(G) MLME Layer

The MLME layer handles the mlme part of wlan protocol.
3 Modules and Function Blocks

3.1 XMIT Path
3.1.1 TX Data Structure

struct xmit_priv
{

_lock
lock;

_sema
xmit_sema;

_sema
terminate_xmitthread_sema;

_queue
be_pending;

_queue
bk_pending;

_queue
vi_pending;

_queue
vo_pending;

_queue
bm_pending;

_queue
legacy_dz_queue;

_queue
apsd_queue;

u8 *pallocated_frame_buf;

u8 *pxmit_frame_buf;

uint free_xmitframe_cnt;

uint mapping_addr;

uint pkt_sz;

_queue
free_xmit_queue;

struct
hw_txqueue
be_txqueue;

struct
hw_txqueue
bk_txqueue;

struct
hw_txqueue
vi_txqueue;

struct
hw_txqueue
vo_txqueue;

struct
hw_txqueue
bmc_txqueue;

uint
frag_len;

_adapter
*adapter;

u8 vcs_setting;

u8
vcs;

u8
vcs_type;

u16 rts_thresh;

uint
tx_bytes;

uint
tx_pkts;

uint
tx_drop;

struct hw_xmit *hwxmits;

u8
hwxmit_entry;

#ifdef CONFIG_USB_HCI

_sema
tx_retevt;//all tx return event;

u8

txirp_cnt;//

//per AC pending irp

int beq_cnt;

int bkq_cnt;

int viq_cnt;

int voq_cnt;

#endif

#ifdef CONFIG_RTL8712

_queue
free_amsdu_xmit_queue;

u8 *pallocated_amsdu_frame_buf;

u8 *pxmit_amsdu_frame_buf;

uint free_amsdu_xmitframe_cnt;

_queue free_txagg_xmit_queue;

u8 *pallocated_txagg_frame_buf;

u8 *pxmit_txagg_frame_buf;

uint free_txagg_xmitframe_cnt;

int cmdseq;

#endif

#ifdef CONFIG_SDIO_HCI

u8 free_pg[8];

u8
public_pgsz;

u8
required_pgsz;

u8
used_pgsz;

u8
init_pgsz;

#ifdef PLATFORM_WINDOWS

PMDL prd_freesz_mdl[2];

u8 brd_freesz_pending[2];

PIRP prd_freesz_irp[2];

PSDBUS_REQUEST_PACKET prd_freesz_sdrp[2];

u8 rd_freesz_irp_idx;

#endif

#endif

_queue free_xmitbuf_queue;

_queue pending_xmitbuf_queue;

u8 *pallocated_xmitbuf;

u8 *pxmitbuf;

uint free_xmitbuf_cnt;
};

struct
sta_xmit_priv
{

_lock
lock;

sint
option;

sint
apsd_setting;
//When bit mask is on, the associated edca queue supports APSD.

struct tx_servq
be_q;

//priority == 0,3

struct tx_servq
bk_q;

//priority == 1,2

struct tx_servq
vi_q;

//priority == 4,5

struct tx_servq
vo_q;

//priority == 6,7

_list
legacy_dz;

_list apsd;

uint
sta_tx_bytes;

uint
sta_tx_pkts;

uint
sta_tx_fail;
};

struct
xmit_frame
{

_list
list;

struct
pkt_attrib
attrib;

_pkt *pkt;

int frame_tag;

_adapter *padapter;

u8 *buf_addr;

struct xmit_buf *pxmitbuf;

#ifdef CONFIG_SDIO_HCI

u8 pg_num;
#endif

#ifdef CONFIG_USB_HCI

//insert urb, irp, and irpcnt info below...

//max frag_cnt = 8

u8 *mem_addr;

u32 sz[8];

PURB
pxmit_urb[8];

#ifdef PLATFORM_WINDOWS

PIRP
pxmit_irp[8];

#endif

u8 bpending[8];

sint ac_tag[8];

sint last[8];

uint irpcnt;

uint fragcnt;

#endif

uint
mem[1];
};
struct pkt_attrib
{

u8
type;

u8
subtype;

u16
ether_type;

int
pktlen;

int
pkt_hdrlen;

int
hdrlen;

int
nr_frags;

int
last_txcmdsz;

int
encrypt;
//when 0 indicate no encrypt. when non-zero, indicate the encrypt algorith

unsigned char iv[8];

int
iv_len;

unsigned char icv[8];

int
icv_len;

int
priority;

int
ack_policy;

int
mac_id;

int
vcs_mode;

u8
dst[ETH_ALEN];

u8
src[ETH_ALEN];

u8
ta[ETH_ALEN];

u8
ra[ETH_ALEN];
};

3.1.2 TX Flow
When Windows/Linux wants to send packets, Windows/Linux will transfer the packet by calling the function handler (SendHandler/hard_start_xmit), which is registered by driver in DriverEntry/init_netdev. The SendHandler/ hard_start_xmit in RTL8712 is xmit_entry.

It has the main job is translating the ethernet network packet to wireless network packet and send the packet to air.
The function xmit_entry has two methods to send the packet:

1. XMIT_THREAD_MODE (SDIO):
The function xmit_entry update the information of packets then enqueues the packets to software queue. The other function xmit_thread dequeues the packets from the software queue then writes to hardware fifo and inform the FW to handle the packet.

Below are the main steps which are done by xmit_entry function:

I. Check the link status: if the device is not linked, drop the packets

II. Get a free xmitframe: check if enough xmitframe for linking Ethernet packet.
III. Function update_attrib: Driver will gather from Ethernet header and security setting and keep the information in struct pkt_attrib.

IV. Function xmit_enqueue in function pre_xmit: Driver enqueues the xmitframe to according software queue.

V. Inform the xmit_thread to handle the packet: up the specified semaphore to inform xmit_thread to handle the packets.

Below are the main steps which are done by xmit_thread function:

I. Waiting the semaphore: waiting the information from xmit_entry.

II. Function update_free_ffsz: update current hw fifo size for later use.

III. Function xmit_xmitframes:

a. First get a free xmitbuf, check if there is any free buffer.
b. checking if there is enough hw resource to transfer the packets.
c. Function xmitframe_coalesce decide the packet size and packet header and restrict the packet header ,payload and update txdesc , then copy to xmitbuf. Driver copy several xmitframe to xmitbuf until xmitbuf does not have enough space.(Burst TX for SDIO).

d. Writing the xmitbuf to corresponding mac tx fifo.
2. XMIT_DIRECT_MODE(USB):
The function xmit_entry first update the information of packets ,then the function pre_xmit write packets directly to hardware fifo or equeues the packets to the software queue if there is no xmitbuf or there is already packets in software queue. The callback function xmitframe_complete will write packets from software queue to hardware fifo if there is enough xmitbuf.
Below are the main steps which are done by xmit_entry function:

3 Check the link status: if the device is not linked, drop the packets
4 Get a free xmitframe: check if enough xmitframe for linking Ethernet packet.

5 Function update_attrib: Driver will gather from Ethernet header and security setting and keep the information in struct pkt_attrib.
Below are the main steps which are done by pre_xmit function:

I. If any pending packets in software queue or there is not enough xmitbuf. Driver enqueue packet to software queue.

II. Call the function xmit_direct: xmitframe_coalesce decide the packet size and packet header and restrict the packet header and payload. Driver copy xmitframe to xmitbuf. The function dump_xframe updates txdesc and writes the xmitbuf to corresponding mac tx fifo.
Below are the main steps which are done by xmitframe_complete function:

I. Dequeue from software queue.

II. Call the function xmitframe_coalesce and dump_xframe.
3.2 RECV Path

3.2.1 RX Data Structure

	struct recv_priv {

_lock
lock;

_sema
recv_sema;

_sema
terminate_recvthread_sema;

_queue
free_recv_queue;

_queue
recv_pending_queue;

u8 *pallocated_frame_buf;

u8 *precv_frame_buf;

uint free_recvframe_cnt;

_adapter
*adapter;

u8 *pallocated_recv_buf;

u8 *precv_buf; // 4 alignment

_queue
free_recv_buf_queue;

u8
free_recv_buf_queue_cnt;

//for A-MPDU Rx reordering buffer control

struct recv_reorder_ctrl recvreorder_ctrl[16];

uint
rx_bytes;

uint
rx_pkts;

uint
rx_drop;

uint rx_icv_err;

uint rx_largepacket_crcerr;

uint rx_smallpacket_crcerr;

uint rx_middlepacket_crcerr;

// OS dependent and interface dependent fields

// …
};

	union recv_frame{

union{

_list list;

struct recv_frame_hdr hdr;

uint mem[RECVFRAME_HDR_ALIGN>>2];

}u;
};

	struct rx_pkt_attrib
{

u8
qos;

u8
to_fr_ds;

u8
frag_num;

u16
seq_num;

u8 pw_save;

u8 mfrag;

u8 mdata;

u8
privicy; // in frame_ctrl field

int
hdrlen; // the WLAN Header Len

int
encrypt;

int
iv_len;

int
icv_len;

int
priority;

int
ack_policy;

u8 dst[ETH_ALEN];

u8
src[ETH_ALEN];

u8
ta[ETH_ALEN];

u8 ra[ETH_ALEN];

u8 bssid[ETH_ALEN];

};

3.2.2 RX Flow

After the frame is received by hardware, driver will be notified. The notification mechanism depends on what kinds of interface that we use.

For SDIO, RXDONE interrupt will tell driver for incoming frame. Then RXDONE handler will process this event. For USB, during driver initialization, it will issue IRPs to tell USB bus driver for sending IN TOKEN. Then bus driver will make polling to check whether there is an incoming frame. If there is an incoming frame, the corresponding callback function will be called. For all interfaces, recv_entry will call recv_func to process this frame. Below are the main steps which are done by this function:

1. validate_recv_frame
- Update frame attribute and check data type (control/management/data)

- Check to/from DS

sta->ap, ap->sta, sta->sta

- Decache

sequence number, fragment number, retry bit
2. decryptor
- Decrypt and set the ivlen,icvlen of the recv_frame
3. recvframe_chk_defrag
- Check whether de-fragmentation is necessary
- If it is necessary, enqueue the frame to defrag_q
4. portctrl
- Set the security information in the recv_frame

- When using WPA & WPA2, after association and before 4-way handshake, we only accept EAPOL packet
5. process_recv_indicatepkts
- Reorder the 11n packets.
6. wlanhdr_to_ethhdr
- Remove the 802.11 header and add the 802.3 header.

- Add priority to IP header (TOS field) and OOB
7. recv_indicatepkt
- Indicate 802.3 packet to OS.

- After processing the packet, OS will return the packet to driver.
3.3 HCI Wrapper Layer

This chapter illustrates APIs that 8712 use to access hardware, including registers, sram and fifo (ports). Some of the supported APIs now are synchronous io, that is the bus driver will be waiting until the io is done. That also means all these APIs now are with no callback function. The others are asynchronous io, this kind of APIs have callback function.
This table shows all the APIs in this chapter, including done and to do in the feature.

	Synchronous IO
	Asynchronous IO

	direct
	direct

	
	

	read8
	

	read16
	

	read32
	

	write8
	

	write16
	

	write32
	

	read_mem
	

	write_mem
	

	read_port(sdio)
	read_port(usb)

	write_port(sdio)
	write_port(usb)

This function is used to read a character value from hardware registers.

u8 read8(
 _adapter* padapter,

 u32 address

);
· Parameters

· padapter
[IN] pointer to the_adapter* structure
· address

[IN] Specify the address of register

· Return Values

Return the character (u8) value of the register.

· Remarks
=

This function is used to read a word value from hardware registers.
u16 read16(
 _adapter* padapter,

 u32 address

);
· Parameters

· padapter
[IN] pointer to the_adapter* structure
· address

[IN] Specify the address of register

· Return Values

Return the word (u16) value of the register.

=

This function is used to read a double-word value from hardware registers.
u32 read32(
 _adapter* padapter,

 u32 address

);
· Parameters

· padapter
[IN] pointer to the_adapter* structure
· address

[IN] Specify the address of register

· Return Values

Return the double-word (u32) value of the register.

=

This function is used to write a character value to hardware registers.
void write8(
 _adapter* padapter,

 u32 address,

u8 val
);
· Parameters

· padapter
[IN] pointer to the_adapter* structure
· address

[IN] Specify the address of register
· val

[IN] Specify the character value you want to write to the register

· Return Values

void

=

This function is used to write a word value to hardware registers.
void write16(
 _adapter* padapter,

 u32 address,

u16 val
);
· Parameters

· padapter
[IN] pointer to the_adapter* structure
· address

[IN] Specify the address of register
· val

[IN] Specify the word value (u16) you want to write to the register

· Return Values

Void

=

This function is used to write a double-word value to hardware registers.
void write32(
 _adapter* padapter,

 u32 address,

u32 val
);
· Parameters

· padapter
[IN] pointer to the_adapter* structure
· address

[IN] Specify the address of register
· val

[IN] Specify the double-word (u32) value you want to write to the register

· Return Values

void

=

This function is used to read data from 8712 hardware sram.
void read_mem(
 _adapter* padapter,

 u32 address,

u32 cnt,

u8* pmem
);
· Parameters

· padapter
[IN] pointer to the_adapter* structure
· address

[IN] Specify the address of register
· cnt

[IN] Specify the total length you want to access the SRAM
· pmem

[IN/OUT] Pointer to store the read back data

· Return Values

void

=

This function is used to write data to 8712 hardware sram.
void write_mem(
 _adapter* padapter,

 u32 address,

u32 cnt,

u8* pmem
);
· Parameters

· padapter
[IN] pointer to the_adapter* structure
· address

[IN] Specify the address of register
· cnt

[IN] Specify the total length you want to access the SRAM
· pmem

[IN/OUT] Pointer to the write data
· Return Values

void

=

This function is used to read data from 8711 hardware rx fifo.
void read_port(
 _adapter* padapter,

 u32 address,

u32 cnt,

u8* pmem
);
· Parameters

· padapter
[IN] pointer to the_adapter* structure
· address

[IN] Specify the address of rx FIFO. For rx path, this value is “Host_R_FIFO”
· cnt

[IN] Specify the total length you want to access the rx FIFO
· pmem

[IN/OUT] Pointer to store the read back data
· Return Values

void

=

This function is used to write data to 8711 hardware tx fifo.
void write_port(
 _adapter* padapter,

 u32 address,

u32 cnt,

u8* pmem
);
· Parameters

· padapter
[IN] pointer to the_adapter* structure
· address

[IN] Specify the address of rx FIFO. For tx path, this value is “Host_W_FIFO”
· cnt

[IN] Specify the total length you want to access the tx FIFO
· pmem

[IN] Pointer to the data to write to tx FIFO

· Return Values

Void

=

3.3.1 SDIO sub-Layer

The sdio interface is using command52/command53 to access hardware. The register can use command52 or command53. The tx fifo and rx fifo are using command53. The address used in the SDIO interface is 17 bits. So this layer will translate the 32 bits address to 17 bits address. The translation rule is defined in datasheet.
3.3.2 USB sub-Layer

The RTL8712 uses the control pipe to access registers and uses bulk pipes to access Tx/Rx fifo.
There are five endpoints in the RTL8712 hardware for USB interface. One control endpoint, two Tx Bulk out endpoints, one Rx Bulk in endpoint, one H2C Bulk out endpoint. The following table is the description for each endpoint of RTL8712 hardware.
	
	Endpoint number
	Purpose

	Control Endpoint
	0x00
	Used to access the MAC/RF/BaseBand registers

	Bulk Out
	0x04
	Used to transmit the VO/VI data packets

	Bulk Out
	0x06
	Used to transmit the BE/BK data packets

	Bulk In
	0x03
	Used to receive the C2H event and the data packets from air

	Bulk Out
	0x0d
	Used to transmit the H2C commands to RTL8712 firmware

The Control Endpoint is used by USB core to get the RTL8712 hardware information and starts the USB initialization procedure. The RTL8712 wireless driver is able to use the Control Endpoint to read/write the MAC/RF/BaseBand register.
The Bulk out endpoint with endpoint number 0x04 is used to transmit the data packets with VO/VI QoS tag. This endpoint is a high priority endpoint.

The Bulk out endpoint with endpoint number 0x06 is used to transmit the data packets with BE/BK QoS tag. This endpoint is a low priority endpoint.

The Bulk IN endpoint with endpoint number 0x03 is used to receive the data packets which the RTL8712 device got from the air. This endpoint is also used to receive the C2H event which is generated by RTL8712 firmware. For more detail about the C2H event, please check the section 3.5.2.

The Bulk out endpoint with endpoint number 0x0d is used to send the H2C command to RTL8712 firmware. Some tasks will be offloaded by RTL8712 firmware. For more details about H2C command, please check the section 3.5.1 and 3.5.3.

3.4 IOCTL Dispatcher

3.4.1 IOCTL overview

In a conventional operating system, the IOCTL is an interface between user-space and kernel space. The application on the user-space typically makes a request to the device driver on the kernel-space via the IOCTL.

In the rtl8712 driver, we define a number of dispatch functions for making responses to the IOCTL.

These APIs(or dispatching functions) which are defined in the “rtl871x_ioctl_linux.c” file support the standard wireless tools, e.g. iwconfig, iwlist, and wpa_supplicant.

The iwlist and iwconfig are for scanning (site survey) and connecting to AP respectively.

The wpa_supplicant is for key management & key negotiation with a WPA Authenticator.
3.4.2 Basic dispatch functions

When the iwlist tool makes a scanning request, in the rtl8712 driver the corresponding dispatch function translates the request to the core function which handles with the scanning request and collects the APs’(BSS) information scanned in the vicinity .

Similarly, when the iwconfig tool makes a connecting request, in the rtl8712 driver the corresponding dispatch function translates the request to the core function which processes the connecting procedure.

For more detail, please refer to the website http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Tools.html/.
Fro Linux OS, the rtl8712 driver needs to register the dispatch (callback) functions with kernel as follows:

	static iw_handler r8711_handlers[] =

{

 NULL,
/* SIOCSIWCOMMIT */

 r8711_wx_get_name,

/* SIOCGIWNAME */

 dummy,
/* SIOCSIWNWID */

 dummy,
/* SIOCGIWNWID */

r8711_wx_set_freq,

/* SIOCSIWFREQ */

 r8711_wx_get_freq,
/* SIOCGIWFREQ */

 r8711_wx_set_mode,
 /* SIOCSIWMODE */

 r8711_wx_get_mode,
 /* SIOCGIWMODE */

 dummy,//r8711_wx_set_sens, /* SIOCSIWSENS */

r8711_wx_get_sens,

/* SIOCGIWSENS */

 NULL,

/* SIOCSIWRANGE */

 r8711_wx_get_range,

/* SIOCGIWRANGE */

 NULL,

/* SIOCSIWPRIV */

 NULL,

/* SIOCGIWPRIV */

 NULL,

/* SIOCSIWSTATS */

 NULL,

 /* SIOCGIWSTATS */

 dummy,

 /* SIOCSIWSPY */

 dummy,

 /* SIOCGIWSPY */

 NULL,

 /* SIOCGIWTHRSPY */

 NULL,

/* SIOCWIWTHRSPY */

 r8711_wx_set_wap,

/* SIOCSIWAP */

 r8711_wx_get_wap,

 /* SIOCGIWAP */

 r871x_wx_set_mlme, /* request MLME operation; uses struct iw_mlme */

 dummy,

/* SIOCGIWAPLIST -- depricated */

 r8711_wx_set_scan,
/* SIOCSIWSCAN */

 r8711_wx_get_scan,
/* SIOCGIWSCAN */

 r8711_wx_set_essid,
/* SIOCSIWESSID */

 r8711_wx_get_essid,
/* SIOCGIWESSID */

 dummy,

/* SIOCSIWNICKN */

 dummy,

/* SIOCGIWNICKN */

 NULL,

/* -- hole -- */

 NULL,

 /* -- hole -- */

r8711_wx_set_rate,

/* SIOCSIWRATE */

 r8711_wx_get_rate,

 /* SIOCGIWRATE */

 dummy,

/* SIOCSIWRTS */

 r8711_wx_get_rts, /* SIOCGIWRTS */

 r8711_wx_set_frag,

/* SIOCSIWFRAG */

 r8711_wx_get_frag,

 /* SIOCGIWFRAG */

 dummy,

 /* SIOCSIWTXPOW */

 dummy,

 /* SIOCGIWTXPOW */

 dummy,//r8711_wx_set_retry, /* SIOCSIWRETRY */

 r8711_wx_get_retry,//
/* SIOCGIWRETRY */

 r8711_wx_set_enc,

/* SIOCSIWENCODE */

 r8711_wx_get_enc,
/* SIOCGIWENCODE */

 dummy,

/* SIOCSIWPOWER */

 r8711_wx_get_power, /* SIOCGIWPOWER */

 NULL,

/*---hole---*/

NULL,

/*---hole---*/

r871x_wx_set_gen_ie,

* SIOCSIWGENIE */

NULL,

/* SIOCGWGENIE */

r871x_wx_set_auth,

/* SIOCSIWAUTH */

NULL,

/* SIOCGIWAUTH */

r871x_wx_set_enc_ext,

/* SIOCSIWENCODEEXT */

NULL,

/* SIOCGIWENCODEEXT */

r871x_wx_set_pmkid,

/* SIOCSIWPMKSA */

NULL,

/*---hole---*/

};

Basic dispatch functions are described as below:

	Command code
	Registered function
	Description

	SIOCSIWSCAN
	r8711_wx_set_scan()
	for scanning the APs in the vicinity.

	SIOCGIWSCAN
	r8711_wx_get_scan()
	get scanning results for further connecting.

	SIOCSIWESSID
	r8711_wx_set_essid()
	connecting to the AP via the given AP’s SSID.

	SIOCSIWAP
	r8711_wx_set_wap()
	connecting to the AP via the given AP’s BSSID

	SIOCGIWRANGE
	r8711_wx_get_range()
	Get range of parameters.

	SIOCSIWENCODE
	r8711_wx_set_enc()
	for wep key setting and setting open or shared system mode of the wep.

	
	
	

3.4.3 Advanced dispatch functions for WPA/WPA2

For key management & key negotiation with a WPA Authenticator, we adopt the Linux
WPA/WPA2/IEEE 802.1X Supplicant. The driver APIs of the rtl8712 driver are compliant
with “driver_wext.c”
For more detail, please refer to the website http://hostap.epitest.fi/wpa_supplicant/.
The advanced dispatch functions for wpa_supplicant are described as below:
	Command code
	Registered function
	Description

	SIOCSIWGENIE
	r871x_wx_set_gen_ie()
	set Generic IEEE 802.11 information element (e.g., for WPA/RSN/WMM).

	SIOCGIWGENIE
	n/a
	get Generic IEEE 802.11 information, element (e.g., for WPA/RSN/WMM).

	SIOCSIWMLME
	r871x_wx_set_mlme()
	request MLME operation; uses

* struct iw_mlme.

	SIOCSIWAUTH
	r871x_wx_set_auth()
	Authentication mode parameters.

set authentication mode parameters.

	SIOCGIWAUTH
	n/a
	Authentication mode parameters.

get authentication mode parameters.

	SIOCSIWENCODEEXT
	r871x_wx_set_enc_ext()
	Extended version of encoding configuration
set encoding token & mode

	SIOCGIWENCODEEXT
	n/a
	Extended version of encoding configuration
get encoding token & mode

	SIOCSIWPMKSA
	r871x_wx_set_pmkid()
	For PMKSA cache management.

3.5 CMD/EVENT

The CMD/EVENT mechanism is a communication method between RTL8712 wireless driver and RTL8712 firmware. Of course, the RTL8712 will perform the wireless service on the Host machine. We will use the term “Host driver” to present the RTL8712 wireless driver in the following session. Because of the CMD/EVENT mechanism, the host can offload some tasks by issuing a command (we call this command as H2C command) to the RTL8712 firmware. After the RTL8712 firmware receive the H2C command with the specific command code, the RTL8712 firmware will know what it should perform now. After the RTL8712 firmware finish the H2C command sent from the host driver, it will report some status or results to the host driver by issuing the event (we call this event as C2H Event) with specific event code. For example, the 802.11 MLME is implemented by this method.

The following figure shows the H2C command format:

[image: image2.emf]BIT

313029282726252423222120191817161514131211109876543210

Offset 0

O

W

N

Offset 4

Offset 8

Offset 12

Offset 16

Offset 20

Offset 24

Offset 28

Offset 32C

Offset 36

Offset 40

~

Offset N

Offset

N+4

C

Offset

N+8

RSVD

RSVD

Content

CMD_SEQElement IDCMD_LEN

RSVD

Element IDCMD_SEQCMD_LEN

RSVD

RSVD

RSVD

RSVD

RSVD

RSVDTAILPAGE(8b)NEXTHEADPAGE(8b)

RSVDOffset=0TXPKTSIZE

RSVD

QSEL(5b)

RSVD

Figure 4-1

The RTL8712 wireless driver (host driver) will send the H2C command to the RTL8712 firmware via the specific interface on the host platform. For the RTL8712 USB wireless device, the H2C command will be sent by using the Bulk OUT endpoint and this endpoint is just for the H2C command. For the RTL8712 SDIO wireless device, the H2C command will be sent by using the CMD52/CMD53 and the SDIO host controller will transfer the H2C command to RTL8712 SDIO device. For more details about the H2C command format, please refer to the RTL8712 data sheet.

3.5.1 H2C Commands

As the previous description, if there are some tasks needs to be handled by RTL8712 firmware, the host driver will issue the H2C command to the RTL8712 firmware. There are lots of H2C commands the RTL8712 wireless driver supports. It means the RTL8712 firmware will offload lots of tasks for the host driver and it will reduce the host CPU utilization.

All supported H2C commands stand in the Rtl8712_cmd.h file and this file can be found in the include folder of RTL8712 driver source tree. In the following section, this document will have some description for each supported H2C command.

1.1.1.1. _setBCNITV
In the SoftAP mode or Adhoc mode, the RTL8712 wireless device has to send the beacon frame. The host driver can issue this command to modify the beacon interval value.

1.1.1.2. _JoinBss

When host driver issues this command to firmware, firmware will perform link up flow given the parameter of the command.

1.1.1.3. _DisConnect

Firmware will disconnect from the current associated BSS/IBSS when this command is received.

1.1.1.4. _CreateBss

Firmware will create an IBSS/BSS when this command is received.

1.1.1.5. _SetOpMode

Host driver can configure Firmware being as Infrastructure, Ad HoC or AP mode by issuing this command.

1.1.1.6. _SiteSurvey

Firmware will perform the site survey flow when this command is received.

1.1.1.7. _SetAuth

Host driver can configure the authentication algorithm by issuing this command. The authentication algorithm can be open, shared, WPA, and WPA2.

1.1.1.8. _SetKey

Host driver can ask Firmware to set up default Key by issuing this command.

1.1.1.9. _SetStaKey

Host driver can ask Firmware to set up Key-Mapping Key by issuing this command.

1.1.1.10. _SetAssocSta

Host driver can ask Firmware to allow the association of a STA by issuing this command. This command will be used when RTL8712 device is in AdHoc or AP mode.

1.1.1.11. _DelAssocsta

Host Driver can ask Firmware to disassociate a STA by this command. This command will be used when in AdHoC or AP mode.

1.1.1.12. _SetBasicRate
The basic rate is the transmission rate to send the management and control frame. Host driver can use this command to set the basic rate.
1.1.1.13. _SetDataRate
The data rate is the transmission rate to send the data frame. Host driver can use this command to set the list of data rates. The RTL8712 firmware will use an appropriate rate as the data rate from the list of data rates.

1.1.1.14. _SetAtim
Host driver can issue this command to set the ATIM window in the Adhoc mode. In the power saving environment of Adhoc network, each station must wake up after the TBTT time for a while to listen the ATIM packet. This packet will indicate the station had buffered some packets for you or not.

1.1.1.15. _SetPwrMode
This command is used to set the power saving mode of RTL8712 wireless device.

1.1.1.16. _SetUsbSuspend
This command can be used to set the power action of RTL8712 device. If the action is 0, the host driver will try to wake the RTL8712 up. If the action is 1, the host driver will make the RTL8712 sleep.
1.1.1.17. _AddBAReq
If the A-MPDU feature is enabled, the RTL8712 has to send the AddBA action frame to the wireless AP. After receiving the AddBA response sent from AP, the RTL8712 will just know the detail parameters of AP’s capability of A-MPDU. Host driver can issue this command to ask the RTL8712 firmware to send the AddBA request frame to AP.

3.5.2 Firmware Events

The following figure illustrates the procedure for the host driver to receive notified event from firmware.

[image: image3.wmf]Host Driver

Firmware

Sequence to receive a event from Firmware

Wait until C

2

HSET of HISR INT is recevied

Copy the event from BUSADDR in C

2

HR

Host Driver must clear COWN of C

2

HR

.

Figure 4-3

The supported firmware events are specified in the following sub-sections:

1.1.1.18. Survey_EVT

When a BSS is sensed, Firmware will report the information of the BSS to Host Driver by this event.

	Event Structure

	Field name
	Type
	Description

	bss
	NDIS_WLAN_BSSID_EX
	Report a bss has been scanned

1.1.1.19. SurverDone_EVT

Firmware will notify the end of site survey by this event.

	Event Structure

	Field name
	Type
	Description

	bss_cnt
	unsigned int
	Report that the requested site survey has been done.
bss_cnt : indicates the number of bss that has been reported.

1.1.1.20. JoinBss_EVT

Firmware will notify the result of the previous join BSS/IBSS request by this command.
	Event Structure

	Field name
	Type
	Description

	network
	wlan_network
	Report the link result of joinning the given bss.

join_res:

-1: authentication fail
-2: association fail
> 0: TID

The structure of wlan_network :

struct wlan_network {

 _list list;

 int network_type;
 int fixed;

 unsigned long last_scanned;

 int aid;
 int join_res;

 NDIS_WLAN_BSSID_EX network;

};
typedef struct list_head _list;
struct list_head {

 struct list_head *next, *prev;

};
1.1.1.21. AddSTA_EVT

Firmware will notify a new STA has already joined the BSS/IBSS by this command. This event will be used when in AdHoC or AP mode.

	Event Structure

	Field name
	Type
	Description

	macaddr[6]
	unsigned char
	The MAC address of the station added by firmware.

	rsvd[2]
	unsigned char
	Reserved

1.1.1.22. DelSTA_EVT

Firmware will notify an associated STA has already quit the BSS/IBSS by this command. This event will be used when in AdHoC or AP mode.

	Event Structure

	Field name
	Type
	Description

	macaddr[6]
	unsigned char
	The MAC address of the station deleted by firmware.

	rsvd[2]
	unsigned char
	Reserved

3.5.3 CMD Threads
CMD thread is responsible for handling the command which is fired by host driver. When the driver needs the RTL8712 firmware to accomplish a task, the host driver will queue a required command with specific command code then signal the CMD thread to de-queue the command. CMD thread sends the command to RTL8712 firmware via the APIs which is provided by Host Driver Controller (ex: USH Host Controller, SDIO Host Controller). The related data structure is as follows:

	
struct
cmd_priv
{

_sema
cmd_queue_sema;

_sema
cmd_done_sema;

_sema
terminate_cmdthread_sema;

_queue
cmd_queue;

u8
cmd_seq;

u8
*cmd_buf;
//shall be non-paged, and 4 bytes aligned

u8
*cmd_allocated_buf;

u8
*rsp_buf;
//shall be non-paged, and 4 bytes aligned

u8
*rsp_allocated_buf;

u32
cmd_issued_cnt;

u32
cmd_done_cnt;

u32
rsp_cnt;

_adapter *padapter;

};

	
struct cmd_obj {

u16
cmdcode;

u8
res;

u8
*parmbuf;

u32
cmdsz;

u8
*rsp;

u32
rspsz;

//_sema
cmd_sem;

_list
list;

};

3.5.4 Event Handling

rxcmd_event_hdl
When the firmware indicates an event, the driver will receive an interrupt of C2HSET, the driver in the ISR calls rxcmd_event_hdl to handle this event. The event length and sequence can be retrieved from the header of event. After the information is obtained, event_handle is responsible for the event handling.

Event_handle:

First of all, several procedures should be done to ensure the event is valid. Events with invalid sequence number, size or event code should be dropped and driver will continue to obtain next one. If there is an corresponding event callback to the event, it will be executed. Event callback structure is illustrated as follows:
 struct fwevent wlanevents[] =

{
{0, dummy_event_callback},
/*0*/

{0, NULL},

{0, NULL},

{0, NULL},

{0, NULL},

{0, NULL},

{0, NULL},

{0, NULL},

{0, &survey_event_callback},

/*8*/

{sizeof (struct surveydone_event), &surveydone_event_callback},
/*9*/

{0, &joinbss_event_callback},

/*10*/

{sizeof(struct stassoc_event), &stassoc_event_callback},

{sizeof(struct stadel_event), &stadel_event_callback},

{0, &atimdone_event_callback},

{0, dummy_event_callback},

{0, NULL},
/*15*/

{0, NULL},

{0, NULL},

{0, NULL},

{0, fwdbg_event_callback},

{0, NULL},
 /*20*/

{0, NULL},

{0, NULL},

{0, &cpwm_event_callback},

};
3.6 MLME Layer

The 802.11 MLME which performs the 802.11 MAC Layer Management tasks is carried out based on the cmd/event mechanism between RTL8712 host driver and firmware. For instance, the functions of site survey, joining a BSS, disassociating a BSS, and so on. Depending on different OS platforms, these utilities for wireless configuration can direct the driver to interact with the firmware based on cmd/event mechanism in order to achieve the 802.11 MLME tasks. These utilities use the ioctl method to control the driver, for example, the NDIS driver on the windows XP cooperate with

window-zero-config utility, and Linux WIFI driver can use the wireless tools as the iwconfig/iwlist, etc.
The clause 3.6.1 ~ 3.6.3 illustrate the RTL8712’s 802.11 MLME flow among utility, driver, and firmware based on the Windows XP OS. And the clause 3.6.4 illustrates the same flow based on LINUX OS using the iwconfig/iwlist wireless tools.
3.6.1 Site Survey - BSSID SCAN and LIST

[image: image4.wmf]Driver

Firmware

OID

_

802

_

11

_

BSSID

_

LIST

_

SCAN

(

Set

)

_

SiteSurvey

_

CMD

_

_

Survey

_

EVT

_

_

SurveyDone

_

EVT

_

OID

_

802

_

11

_

BSSID

_

LIST

(

Query

)

AP

ProbeReq

ProbeRsp

/

Beacon

ProbeReq

ProbeRsp

/

Beacon

_

Survey

_

EVT

_

driver return a list containing

all of the

scaned

 BSSIDs and

their attributes

.

Figure 4-4

3.6.2 Join a BSS - Set SSID

[image: image5.wmf]Driver

Firmware

OID

_

802

_

11

_

SSID

(

Set

)

AP

_

JoinBss

_

CMD

_

Authentication

exchanges

Association Rsp

Association Req

_

JoinBss

_

EVT

_

NdisMIndicateStatus

NdisMIndicateStatus

Complete

(

_

Set

Auth

_

CMD

_

)

(

_

SetKey

_

CMD

_

)

Figure 4-5

3.6.3 Disconnect - Disassociate CMD

3.6.4 Wireless LAN IOCTL on Linux OS

[image: image6.emf]RTL8712DriverFirmware

_SiteSurvey_CMD_

_Survey_EVT_

_SurveyDone_EVT_

_JoinBss_CMD_

_JoinBss_EVT_

netif_carrier_on()

AP

ProbeReq

ProbeRsp/Beacon

ProbeReq

ProbeRsp/Beacon

_Survey_EVT_

Auth[1]_SharedSystem

Auth[0]_SharedSystem

AssocRsp

AssocReq

FW will allocate CAM

entry with CAM_ID = 5

Auth[3]_SharedSystem

Auth[2]_SharedSystem

SIOCSIWSCAN

(0x8B18)

/* trigger scanning */

_SetAuth_CMD_

__SetKey_CMD_

SIOCSIWENCODE

(0x8B2A)

/* set encoding token &

mode */

SIOCGIWSCAN

(0x8B19)

/* get scanning results */

SIOCSIWESSID

(0x8B1A)

/* set ESSID (network

name) */

 Figure 4-6
4 INT Handler

This INT Handler is used in SDIO interface. When the SDIO bus driver find there is a interrupt triggered by SDIO card, the bus driver will call the corresponding INT Handler. The INT Handler will read the SDIO_HIMR register to check there is a truly interrupt or fake interrupt. The INT Handler will do the respond handling according to the INT BIT.
5 Basic Operations

6 References

IOCTL/OID

Dispatcher

MLME Layer

RTL8712 Driver Architecture

Event_Handle

CMD_Thread

RECV_FUNC

XMIT_FUNC or XMIT_THREAD

RECV_OSDEP

XMIT_OSDEP

 USB Sub-Layer

 			SDIO Sub-Layer

	 HAL (Hardware Abstraction Layer)

	 (WIFI Driver – Core Layer)

OS Dep. Layer

(WinCE, Linux, eCoS, ThreadX, …)

Confidential and Proprietary Information
© Copyright 2009 Realtek Semiconductor Corporation -- All Rights Reserved
Confidential and Proprietary Information
 Page 45 of 45
© Copyright 2009 Realtek Semiconductor Corporation -- All Rights Reserved

_1238332120.vsd
driver return a list containing all of the scaned BSSIDs and their attributes.

Driver

Firmware

OID_802_11_BSSID_LIST_SCAN (Set)

_SiteSurvey_CMD_

_Survey_EVT_

_SurveyDone_EVT_

OID_802_11_BSSID_LIST
(Query)

AP

ProbeReq

ProbeRsp/Beacon

ProbeReq

ProbeRsp/Beacon

_Survey_EVT_

_1276267879.xls
Sheet1

		BIT		31		30		29		28		27		26		25		24		23		22		21		20		19		18		17		16		15		14		13		12		11		10		9		8		7		6		5		4		3		2		1		0

		Offset 0		OWN		RSVD														Offset=0																TXPKTSIZE

		Offset 4		RSVD																																						QSEL(5b)										RSVD

		Offset 8		RSVD

		Offset 12		RSVD																																TAILPAGE(8b)																NEXTHEADPAGE(8b)

		Offset 16		RSVD

		Offset 20		RSVD																																RSVD

		Offset 24		RSVD

		Offset 28		RSVD

		Offset 32		C		CMD_SEQ														Element ID																CMD_LEN

		Offset 36		RSVD

		Offset 40		Content

		~

		Offset N

		Offset N+4		C		CMD_SEQ														Element ID																CMD_LEN

		Offset N+8		RSVD

		Offset N+16

_1305357448.vsd
RTL8712

Driver

Firmware

_SiteSurvey_CMD_

_Survey_EVT_

_SurveyDone_EVT_

_JoinBss_CMD_

_JoinBss_EVT_

netif_carrier_on()

AP

ProbeReq

ProbeRsp/Beacon

ProbeReq

ProbeRsp/Beacon

_Survey_EVT_

Auth[1]_SharedSystem

Auth[0]_SharedSystem

AssocRsp

AssocReq

FW will allocate CAM entry with CAM_ID = 5

SIOCSIWSCAN
(0x8B18)
/* trigger scanning */

_SetAuth_CMD_

__SetKey_CMD_

SIOCSIWENCODE
(0x8B2A)
/* set encoding token & mode */

Auth[3]_SharedSystem

Auth[2]_SharedSystem

SIOCGIWSCAN
(0x8B19)
/* get scanning results */

SIOCSIWESSID
(0x8B1A)
/* set ESSID (network name) */

_1238334930.vsd
Driver

Firmware

OID_802_11_SSID (Set)

Authentication exchanges

_JoinBss_EVT_

NdisMIndicateStatus

NdisMIndicateStatusComplete

AP

(_SetAuth_CMD_)

Association Rsp

(_SetKey_CMD_)

_JoinBss_CMD_

Association Req

_1226304257.vsd
�

Host Driver

Firmware

Sequence to receive a event from Firmware

Wait until C2HSET of HISR INT is recevied�

Copy the event from BUSADDR in C2HR �

Host Driver must clear COWN of C2HR.

